1. Marks Distribution
1 Lessons
5m
Syllabus and Marks distribution
5 Minutes
Free
Chapter 1. Pipe Flow
36 Lessons
6h 45m
1. Pipe flow (differences between pipe flow and open channel flow)
13 Minutes
Free
2. Reynold's experiment and flow based on Reynold's number
8 Minutes
Free
3. Laminar flow in circular pipe (expression for shear stress)
14 Minutes
4. Laminar flow in circular pipe (velocity distribution)
8 Minutes
5. Relation between average velocity and maximum velocity
9 Minutes
6. Laminar flow in circular pipe (head loss)
7 Minutes
7. Numerical 1 (laminar flow)
24 Minutes
8. Numerical 2 (laminar flow)
19 Minutes
9. K.E. and momentum correction factors
7 Minutes
10. Calculation of K.E. and momentum correction factors for laminar flow
10 Minutes
11. Turbulent flow (basic features)
9 Minutes
12. Shear stress development in turbulent flow
5 Minutes
13. Boussinesq theory of turbulence
4 Minutes
14. Reynold's principle of turbulence
5 Minutes
15. Prandtl's mixing length theory
8 Minutes
16. Velocity distribution for turbulent flow (Prandtl's universal velocity distribution, applicable for both smooth and rough pipe)
12 Minutes
17. Analysis of velocity distribution in turbulent flow
8 Minutes
18. Hydrodynamically smooth and rough pipe
7 Minutes
19. Velocity distribution equation for turbulent flow in smooth pipe
13 Minutes
20. Velocity distribution equation for turbulent flow inrough pipe
4 Minutes
21. Velocity distribution equation in terms of mean velocity
9 Minutes
22. Relation between velocity at any point and average velocity, location of average velocity
8 Minutes
23. Darcy-Weisbach equation
17 Minutes
24. Resistance to flow of fluid in smooth and rough pipes
24 Minutes
25. Numerical 1 (Turbulent flow)
16 Minutes
26. Numerical 2 (Turbulent flow)
10 Minutes
27. Numerical 3 (Turbulent flow)
10 Minutes
28. Numerical 4 (Turbulent flow, concept of hydraulic radius)
15 Minutes
29. Numerical 5 (Turbulent flow)
13 Minutes
30. Energy losses in pipe
5 Minutes
31. Loss of head due to sudden enlargement of pipe
8 Minutes
32. Head loss due to sudden contraction of pipe
7 Minutes
33. Other types of minor losses
5 Minutes
34. HGL and TEL
9 Minutes
35. Numerical (minor losses)
11 Minutes
36. Numerical (HGL and TEL)
25 Minutes
Chapter 2. Simple pipe flow problems and solutions
18 Lessons
2h 42m
1. Three categories of pipe flow problems
7 Minutes
2. Category 1 (procedure to solve)
3 Minutes
3. Numerical (Category 1)
6 Minutes
4. Category 2 (procedure for solving)
5 Minutes
5. Numerical 2 (Category 2)
11 Minutes
6. Numerical 4 (Category 2)
8 Minutes
7. Category 3 (procedure for solving)
4 Minutes
8. Numerical 4 (Category 3)
10 Minutes
9. Numerical 5 (Category 3)
9 Minutes
10. Pipes in series and parallel, Concept of equivalent pipe, Dupuit's equation
14 Minutes
11. Numerical 6 (Pipes in series and parallel)
7 Minutes
11. Numerical 7 (Pipes in series and parallel)
10 Minutes
12. Numerical 8 (Pipes in series and parallel)
10 Minutes
13. Numerical 9 (Pipes in series and parallel, 2075 Baiisakh)
13 Minutes
14. Siphon and its application (intro)
8 Minutes
15. Characteristic parameters of siphon
15 Minutes
16. Numerical 10 (siphon)
8 Minutes
17. Numerical 11 (siphon)
8 Minutes
Chapter 3. Three Reservoirs Problem and Pipe Networks
15 Lessons
4h 4m
1. Introduction
12 Minutes
2. Procedure for solving Type 1- Problem (3 reservoir problem)
8 Minutes
3. Numerical (Type 1)
10 Minutes
4. Procedure for solving Type 2-Problem (3 reservoir problem)
8 Minutes
5. Numerical 2 (Type 2)
16 Minutes
6. Procedure for solving Type 3-Problem (3 reservoir problem)
11 Minutes
7. Numerical 3 (Type 3)
27 Minutes
8. Numerical 4 (3 reservoir problem. 2073 Magh)
15 Minutes
9. Numerical 5 (3 reservoir problem, 2073 Bhadra, 2076 Baisakh)
16 Minutes
10. Introduction to pipe network problem
9 Minutes
11. Hardy Cross Method
13 Minutes
12. Numerical 6 (Pipe network problem)
19 Minutes
13. Numerical 7 (Pipe network problem)
32 Minutes
14. Numerical 8 (Pipe network problem, 2071 Bhadra)
14 Minutes
15 Numerical 9 (Pipe network problem, 2072 Magh)
25 Minutes
Chapter 4. Unsteady Flow in Pipes
19 Lessons
3h 55m
1. Introduction_1
6 Minutes
2. Equation of motion (unsteady flow)
15 Minutes
3. Analysis of Euler's equation
14 Minutes
4. Numerical 1 (Analysis of Euler's equation)
15 Minutes
5. Numerical 2 (Analysis of Euler's equation)
18 Minutes
6. Numerical 3 (Analysis of Euler's equation)
10 Minutes
7. Numerical 4 (Analysis of Euler's equation)
8 Minutes
8. Continuity equation (unsteady flow)
11 Minutes
9. Water hammer and its effects
13 Minutes
10. Evolution of hydraulic transient waves
13 Minutes
11. Time history of water hammer pressure wave
10 Minutes
12. Pressure rise due to gradual closure of valve
7 Minutes
13. Pressure rise due to sudden closure of valve (rigid pipes)
6 Minutes
14. Pressure rise due to sudden closure of valve (elastic pipes)
11 Minutes
15. Numerical 5 (Pressure rise due to evolution of hydraulic transient waves)
8 Minutes
16. Numerical 6 (Pressure rise due to evolution of transient waves)
9 Minutes
17. Numerical 7 (Pressure rise due to evolution of transient waves)
25 Minutes
18. Numerical 8 (Time history of water hammer pressure wave)
21 Minutes
19. Relief devices against action of water hammer (surge tank)
8 Minutes
Chapter 5. Basics of Open Channel Flow
5 Lessons
42m
1. Introduction
11 Minutes
2. Types of Open Channel
8 Minutes
3. Geometric properties of channel section
8 Minutes
4. Classification of open channel flow
9 Minutes
5. Exam questions
5 Minutes
Chapter 6. Uniform Flow in Open Channel
23 Lessons
3h 29m
1. Condition for uniform flow
6 Minutes
2. Expression for shear stress acting on the channel boundary
7 Minutes
3. Uniform flow formula
5 Minutes
4. Factors affecting Manning's n
7 Minutes
5. Velocity Distribution
12 Minutes
6. Some terms in uniform flow computation
13 Minutes
7. Solution of uniform flow problems
6 Minutes
8. Numerical 1 (Uniform flow)
16 Minutes
9. Numerical 2 (Uniform flow)
4 Minutes
10. Numerical 3 (Uniform flow)
8 Minutes
11. Most efficient channel section condition
3 Minutes
12. Most efficient rectangular channel
5 Minutes
13. Numerical 4 (most economic rectangular channel)
9 Minutes
14. Most efficient triangular channel
7 Minutes
15. Numerical 5 (most economic triangular channel)
5 Minutes
16. Most efficient trapezoidal channel
16 Minutes
17. Numerical 6 (most economic trapezoidal channel)
8 Minutes
18. Numerical 6 (most efficient trapezoidal section)
8 Minutes
19. Numerical 7 (Trapezoidal section, 2073 Bhadra)
8 Minutes
20. Most efficient circular channel (condition for maximum velocity)
15 Minutes
21. Most efficient circular channel section (condition for maximum discharge)
12 Minutes
22. Numerical 8 (most economic circular channel section)
8 Minutes
23. Numerical 7 (Circular channel section, 2074 Bhadra)
10 Minutes
Chapter 7. Energy and Momentum Principles in Open Channel Flow
29 Lessons
4h 59m
1. Specific energy
9 Minutes
2. Specific energy curve, condition for critical flow
13 Minutes
3. Specific energy, critical depth for rectangular channel
7 Minutes
4. Numerical 1 (rectangular channel)
10 Minutes
5. Numerical 2 (rectangular channel)
5 Minutes
6. Numerical 3 (rectangular channel)
8 Minutes
7. Numerical 4 (rectangular channel, 2068 Magh)
4 Minutes
8. Specific energy, critical depth for triangular channel
6 Minutes
9. Numerical 5 (triangular channel)
7 Minutes
10. Specific energy, critical depth for trapezoidal channel
6 Minutes
11. Numerical 6 (Trapezoidal channel)
12 Minutes
12. Numerical 7 (Trapezoidal channel)
9 Minutes
13. Discharge-depth curve for a given specific energy
7 Minutes
14. Maximum discharge for a rectangular channel section
6 Minutes
15. Critical flow and its computation
9 Minutes
16. Section factor and Hydraulic exponent during critical flow computation
6 Minutes
17. Occurence of critical depth
10 Minutes
18. Numerical 8 (Critical flow computation)
29 Minutes
19. Application of energy principle and critical depth concept
14 Minutes
20. Numerical 9 (Provision of hump)
14 Minutes
21. Numerical 10 (Provision of hump)
9 Minutes
22. Numerical 11 (2076 Baisakh)
15 Minutes
23. Numerical 12(Channel with contraction of width)
17 Minutes
24. Numerical 12 (channel transition, both in cross section and bed slope)
12 Minutes
25. Numerical 13 (channel transition, 2074 Bhadra)
9 Minutes
26. Momentum principle in open channel flow
8 Minutes
27. Specific force, Specific force curve and condition for critical flow
12 Minutes
28. Conjugate depths and relation between them, related question
8 Minutes
29. Question based on relation between conjugate depth(2076 Baisakh)
6 Minutes
Chapter 8. Non-uniform Gradually Varied Flow
21 Lessons
4h 47m
1. Introduction
8 Minutes
2. Differential equation for the GVF
10 Minutes
3. Modified forms of GVF equations
10 Minutes
4. Classification of flow surface profiles
14 Minutes
5. Characteristics and analysis of flow profiles
9 Minutes
6. Mild slope profile (M1, M2 and M3)
15 Minutes
7. Profiles in steep slope (S1, S2 and S3)
18 Minutes
8. Profiles in critical slope (C1 and C3)
9 Minutes
9. Profiles in horizontal and adverse slopes (H2, H3, A2 and A3)
8 Minutes
10. Analysis of flow profile (break in grades)
17 Minutes
11. Numerical (Analysis of flow in GVF)
16 Minutes
12. Direct step method
11 Minutes
13. Numerical (Direct step method)
26 Minutes
14. Numerical (Direct step method)
18 Minutes
15. Standard step method
12 Minutes
16. Numerical (Standard step method)
16 Minutes
17. Graphical integration method
6 Minutes
18. Direct integration method
13 Minutes
19. Numerical (Direct integration method)
19 Minutes
20. Bresse's method
7 Minutes
21. Numerical (Bresse's method)
15 Minutes
Chapter 9. Non-uniform Rapidly Varied Flow
12 Lessons
1h 59m
1. Introduction
7 Minutes
2. Hydraulic jump phenomenon
5 Minutes
3. Relationship between sequent depths
14 Minutes
4. Energy loss in hydraulic jump
8 Minutes
5. Length, height and efficiency of jump
3 Minutes
6. Classification of the hydraulic jump
13 Minutes
7. Relation between Fr1 and Fr2
5 Minutes
8. Numerical 1
15 Minutes
9. Numerical 2
11 Minutes
10. Numerical 3 (2073 Bhadra)
7 Minutes
11. Numerical 4
12 Minutes
12. Numerical 5
12 Minutes
Chapter 10. Flow in Mobile Boundary Channel
18 Lessons
2h 31m
1. Introduction to rigid and mobile boundary channel
5 Minutes
2. Design principle of rigid boundary channel (minimum permissible velocity approach)
6 Minutes
3. Example (Minimum permissible velocity approach)
6 Minutes
4. Definition of alluvial channel, shear stress distribution on channel boundary, incipient motion condition
7 Minutes
5. Design of mobile boundary channel (maximum permissible velocity approach)
8 Minutes
6. Numerical example (Maximum permissible velocity method)
6 Minutes
7. Tractive force method (distribution of tractive force)
9 Minutes
8 Tractive force ratio
12 Minutes
9. Shield's tractive force theory
14 Minutes
10. Numerical (Shield's tractive force theory)
6 Minutes
11. Design steps of channel by tractive force method
3 Minutes
12. Numerical (Tractive force method)
13 Minutes
13. Design with regime approach (Kennedy's silt theory and Lindley's regime theory)
8 Minutes
14. Lacey's regime theory (design steps)
6 Minutes
15. Numerical (Lacey's regime approach)
6 Minutes
16. Numerical (2068 Bhadra, similar question in 2076 baisakh)
10 Minutes
17. Numerical (2068 magh, 2071 magh)
6 Minutes
18. Formation of river beds based on shear stress
10 Minutes
1. Chapter 7 (determination of upstream and downstream depth when there is hump in the downstream)
28 Minutes
2. Chapter 8 (calculation of normal depth and critical depth in wide rectangular channel)
11 Minutes
3. Chapter 8 (determination of normal depth in trapezoidal channel)
23 Minutes
4. Chapter 9 (calculation of sequent depths and energy loss during hydraulic jump)
11 Minutes
Question Bank
57 Lessons
11h 12m
2075 Bhadra -
1. Q. No. 1.a
7 Minutes
-
2. Q. No. 1.b
9 Minutes
-
3. Q. No. 2.a
6 Minutes
-
4. Q. No.2.b
28 Minutes
-
5. Q. No. 3.a
15 Minutes
-
6. Q. No. 3.b
7 Minutes
-
7. Q. No. 4.a
12 Minutes
-
8. Q. No.4.b
4 Minutes
-
9.1 Q. No. 4.c
10 Minutes
-
10. Q. No. 5.a
6 Minutes
-
11. Q. No. 5.b
8 Minutes
2076 Baisakh -
1. Q. No. 1.a
17 Minutes
-
2. Q. No. 1.b
13 Minutes
-
3. Q. No. 2.a
14 Minutes
-
4. Q. No. 2.b
10 Minutes
-
5. Q. No. 3.a
8 Minutes
-
6. Q. No. 3.b
5 Minutes
-
7. Q. No. 3.c
17 Minutes
-
8. Q. No. 4.a
9 Minutes
-
9. Q. No. 4.b
13 Minutes
-
10. Q. No. 5.a
10 Minutes
-
11. Q. No. 5.b
14 Minutes
2076 Bhadra -
1. Q. No. 1.a
15 Minutes
-
2. Q. No. 1.b
9 Minutes
-
3. Q. No. 1.c
9 Minutes
-
4. Q. No. 2.a
28 Minutes
-
5. Q. No. 2.b
10 Minutes
-
6. Q. No. 3.a
5 Minutes
-
7. Q. No. 3.b
5 Minutes
-
8. Q. No. 3.c
8 Minutes
-
9. Q. No. 4.a
5 Minutes
-
10. Q. No. 4.b
9 Minutes
-
11. Q. No. 4.c
3 Minutes
-
12. Q, No. 5.a
14 Minutes
-
13. Q. No. 5.b
9 Minutes
2077 Poush -
1. Q. No. 1.a
24 Minutes
-
2. Q. No. 1.b
11 Minutes
-
3. Q. No. 2.a
14 Minutes
-
4. Q. No. 2.b
7 Minutes
-
5. Q. No. 3.a
12 Minutes
-
6. Q. No. 3.b
3 Minutes
-
7. Q. No. 3.c
11 Minutes
-
8. Q. No. 4.a
13 Minutes
-
9. Q. No. 4.b
12 Minutes
-
10. Q. No. 5.a
13 Minutes
-
11. Q. No. 5.b
10 Minutes
2078 Baisakh -
1. Q. No. 1.a
14 Minutes
-
2. Q. No. 1.b
6 Minutes
-
3. Q. No. 2.a
13 Minutes
-
4. Q. No. 2.b
13 Minutes
-
5. Q. No. 3.a
2 Minutes
-
6. Q. No. 3.b
14 Minutes
-
7. Q. No. 3.c
7 Minutes
-
8. Q. No. 4.a
10 Minutes
-
9. Q. No. 4.b
22 Minutes
-
10. Q. No. 5.a
24 Minutes
-
11. Q. No. 5.b
16 Minutes